

The acceleration ...

 \dots effect of a Brønsted acid was identified in the photocatalytic oxidation of alcohols using TiO2. In their Communication on page 7976 ff., J. Zhao and co-workers show that the acid adsorbed onto the catalyst surface promotes the decomposition of the Ti/H2O2 species to regenerate active sites for the oxidation.

Inside Cover

Qi Wang, Miao Zhang, Chuncheng Chen, Wanhong Ma, and Jincai Zhao *

The acceleration effect of a Brønsted acid was identified in the photocatalytic oxidation of alcohols using TiO_2 . In their Communication on page 7976 ff., J. Zhao and co-workers show that the acid adsorbed onto the catalyst surface promotes the decomposition of the Ti/H_2O_2 species to regenerate active sites for the oxidation.

